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Abstract
An analytical approach to the problem of a negatively charged donor in a narrow
quantum well (QW) in the presence of crossed magnetic and electric fields is
developed. The width of the QW is taken to be much less than the impurity
radius and the magnetic length. Both magnetic and electric fields are directed
parallel to the heteroplanes. The impurity centre is positioned anywhere within
the QW. The adiabatic approximation is used: the motion of the electron in the
direction perpendicular to the heteroplanes is much faster than that parallel to
the heteroplanes. The explicit dependences of the total energy of the charged
donor upon the parameters of the well and external field strengths are obtained.
The dependences of the binding energy of the charged donor on the width of
the well and the position of the impurity within the well are studied. It is
shown that a displacement of the impurity centre from the mid-point of the QW
leads to a decrease of the binding energy. The relative position of the impurity
within the narrow well affects strongly the dependence of the binding energy
on the width of the well. A red shift of the energy and the detachment rate
of the quasi-two-dimensional charged donor both caused by the weak electric
field are calculated explicitly. The red shift can be balanced by the blue shift
induced by the magnetic field. Using the parameters associated with GaAs and
InGaN QWs estimates of the values expected for an experiment are made.

1. Introduction

The problem of a negatively charged donor consisting of the neutral donor and a weakly bound
extra electron, which are confined within low-dimensional heterostructures, has attracted
considerable attention in recent years. Semiconductor systems based on GaAs/GaAlAs
structures, particularly isolated single quantum wells (QWs), were a major focus of interest
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during the last decade. Of special interest is the narrow QW with a width which is much less
than the radius of the impurity. This is due to the fact that the quasi-two-dimensional charged
donor in the narrow QW is considerably more stable than that in bulk material. It was shown
in [1] that the binding energy Eb of the two-dimensional (2D) negatively charged hydrogenic
donor (D−) scaled to the impurity Rydberg constant Ryd is about Eb ≈ 0.48 Ryd whereas
for the bulk semiconductor we have Eb ≈ 0.055 Ryd [2]. Although the problem of a single
D− has so far been addressed in many papers the interest in multielectron charged donors and
acceptors, in particular the Mg acceptor, in dimensionally quantized structures has recently
been renewed (see [3] and references therein). It was suggested [3] that the origin of the
main photoluminescence band in InGaN/GaN QW structures is due to novel 2D inter-impurity
recombination between 2D donors and Mg acceptors.

It is common knowledge that the external fields strongly modify the confined states of the
charged donors. An increase in the binding energy of the D− in the presence of a magnetic
field B directed perpendicular to the heteroplanes was found to occur (see [4, 5] and references
therein). Although the magnetic field directed perpendicular to the heteroplanes has been
studied in many papers the in-plane magnetic field attracts considerable attention. This is
because the in-plane magnetic field interacts with the confinement that in turn influences
significantly the bound systems in the QW structures [6, 7].

There is also much current interest in the study of effects of combined electric E and
magnetic B fields but little work on this has been published to date. Optical spectroscopy
of the QWs subject to an electric field directed perpendicular to the heteroplanes and parallel
(B ‖ E) [8] and crossed (B ⊥ E) [9] magnetic field has been investigated. Recently the
optical properties of the QWs in the presence of in-plane electric field and crossed (B ⊥ E)
magnetic field were studied in [10]. A configuration of crossed both in-plane electric and
magnetic fields to be considered in this paper has not been studied yet. However this geometry
is of interest. In particularly the effect of the balance of the donor energy shifts induced by
in-plane crossed fields will be shown to occur.

The majority of papers on the problem of the charged donor are based on numerical
calculations, which usually rely upon a variational method. However, the numerical approach
requires a lot of computational effort. In parallel with this the detailed study of the evolution
of the charged donor states as a function of the parameters of the well and magnitudes of the
fields remains unavailable. Thus studies via analytical methods are of great interest because
they make the basic physics of the problem transparent throughout the analysis. In addition a
combination of the analytical and numerical methods improves the accuracy of the calculation
of the impurity states in the QWs [11].

In this paper an analytical approach to the problem of a negatively charged donor in a
QW in the presence of crossed electric and magnetic fields is developed. The case of the
narrow QW considered below is most important, because the states in the wide QW closely
resemble those in the bulk material. In order for the effect of the confinement to be more
pronounced the width of the QW is taken to be much less than the impurity radius and the
magnetic length. In case of a narrow QW an electric field directed perpendicular to the
heteroplanes would produces only a minor effect [6]. Both fields are therefore assumed to lie
within the heteroplanes. The impurity is positioned anywhere within the QW. We emphasize
that we are not in competition with the variational calculations or numerical methods requiring
cumbersome computing and pretending to the comprehensive quantitative results. The main
aim of the paper is the analytical study of the effects specifically provided by the confinement
i.e. the dependences on the width of the QW and the position of the impurity in the presence
of the fields. The motion of the weakly bound ideal 2D extra electron in the absence of the
external fields is considered to be governed by the model short range potential (SRP) associated
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with the neutral donor and the binding energy of the 2D extra electron is treated as the only
parameter. This approach is reminiscent of the use of model potentials in atomic physics (see
[12] and references therein). The dependences of the total energy of the charged donor in the
ground state upon the parameters of the well and the magnitudes of the fields are obtained in
an explicit form. A red shift of the energy level and the detachment rate of the (SRP) extra
electron both induced by the weak electric field are calculated analytically and then compared
with those for the three-dimensional weakly bound particle. Estimates of the expected effects
are made for the parameters of the narrow GaAs QW.

This paper is organized as follows: in section 2 the details of the analytical approach are
presented. In section 3 we test the accuracy of our technique by applying it to the quasi-2D
neutral donor and comparing the results with those obtained by variational calculations. The
binding energy of the charged donor as a function of the width of the QW and strength of the
electric field is calculated in section 4. We discuss these results in section 5 and provide the
conclusions in section 6.

2. General theory

The z-axis is chosen parallel to the uniform magnetic field vector B, which is applied in plane
to a single QW of width d bounded by the infinite barriers at the planes y = ±d/2. The
uniform electric field E is directed parallel to the heteroplanes namely to the x-axis. The other
parameters relevant to the calculation are the impurity radius (a0), in particularly the Bohr
radius for the D−, and the magnetic length (aB). They are defined as usual by

a0 = 4πε0εh̄
2

µe2
aB =

(
h̄

eB

)1/2

where µ is the electron effective mass and ε is the dielectric constant. The impurity centre is
positioned at the distance b from the mid-point of the QW that is taken to be the point y = 0.
We take the conduction band to be parabolic non-degenerate and separated from the valence
band by a wide energy gap.

In general the problem of the charged donor subject to confinement and external fields
cannot be solved analytically. Nevertheless below we consider the specific case in which an
approximate analytical solution can be obtained in an explicit form. Our approach is based on
the adiabatic approximation. The width of the QW is assumed to be much less than the radius
of the impurity and the magnetic length, i.e.

d � a0, aB. (2.1)

We consider the charged donor formed by the neutral system and extra electron at a position
r. The neutral donor consists of an attractive centre of charge +Ne and N ‘inner’ electrons
having the coordinates rj (j = 1, . . . , N). In the effective mass approximation the equation
for the wave function �(r1, . . . , rN , r) of the charged donor subject to the external uniform
magnetic B and electric E fields has the form{

1

2µ
(−ih̄∇ − eByex)

2 − eEx − Ne2

4πε0ε|r − bey | +
N∑
j=1

e2

4πε0ε|r − rj | + H0

}
� = E�

(2.2)

where

H0 =
N∑
j=1

[
1

2µ
(−ih̄∇j − eByjex)

2 − eExj − Ne2

4πεε0|rj − bey | +
N∑

i 
=j=1

e2

4πεε0|rj − ri |
]

(2.3)



3730 B S Monozon and P Schmelcher

is the Hamiltonian describing the neutral donor in the presence of external fields and where ex
and ey are the unit vectors. By solving this equation subject to the boundary conditions

�(r1, . . . , rN, r) = 0 at yj , y = ±d

2
j = 1, . . . , N (2.4)

the total energy E and wave function � can be found in principle.
Further we assume as usual that the motion of the weakly bound extra electron is

adiabatically slower than that of the ‘inner’ electrons. Under the condition (2.1) and leaving
aside the correlation effects the solution to equation (2.2) for the ground state of a charged
donor satisfying the boundary conditions (2.4), may be written in the form

�(r1, . . . , rN, r) = χ(y1) . . . χ(yN)χ(y)f (ρ1, . . . ,ρN)ϕ(ρ) (2.5)

where

χ(y) =
(

2

d

)1/2

cos
πy

d
(2.6)

is the wave function of the ground state of the electron in the one-dimensional QW and where
f (ρ1, . . . ,ρN) and ϕ(ρ) (ρ = xex + zez) are the two-dimensional wave functions of the
‘inner’ and extra electrons respectively. The wave function f (ρ1, . . . ,ρN) and energy E0 of
the neutral donor can be found by solving the equation

〈y1, . . . , yN |H0|y1, . . . , yN 〉f (ρ1, . . . ,ρN) = E0f (ρ1, . . . ,ρN) (2.7)

where 〈y1, . . . , yN | . . . |y1, . . . , yN 〉 is an average with respect to the function χ(y1) . . . χ(yN).
Averaging the equation (2.2) with respect to the function χ(y1) . . . χ(yN)χ(y)f (ρ1, . . . , ρN)

we obtain [
− h̄2

2µ
∇2
ρ + U0(ρ) + U1(ρ)− eEx

]
ϕ(ρ) = Wϕ(ρ) (2.8)

where

U0(ρ) = − e2

4πεε0

[
N

ρ
−

N∑
j=1

〈
f (ρ1, . . . ,ρN)

∣∣∣∣ 1

ρ − ρj

∣∣∣∣f (ρ1, . . . ,ρN)

〉]
(2.9)

and where

U1(ρ) = e2

4πεε0

[
N

ρ
−

〈
y

∣∣∣∣ N

|r − bey |
∣∣∣∣y

〉
+

N∑
j=1

〈
y1, . . . , yN , y, f

∣∣∣∣ 1

r − rj

∣∣∣∣y1, . . . , yN , y, f

〉

−
N∑
j=1

〈
f (ρ1, . . . ,ρN)

∣∣∣∣ 1

|ρ − ρj |
∣∣∣∣f (ρ1, . . . ,ρN)

〉]
. (2.10)

The energy W is defined as follows

E = h̄2π2

2µd2
+
e2B2d2

24µ

(
1 − 6

π2

)
+ E0 + W (2.11)

where the first and second terms on the right-hand side of equation (2.11) are the energy
of the spatial quantization of the extra electron in the y-direction and its energy red shift
induced by the magnetic field. The potentials (2.9) and (2.10) describe the ideal 2D extra
electron and the effect of the finite width d of the QW respectively. Following the above
mentioned ideas the energy of the ideal 2D extra electron in the absence of the electric
field (E = 0) W0 = −h̄2q2

0/2µ is considered as a parameter determined from numerical
calculations or experimental data. Furthermore we replace the potential (2.9) by the model
short range potential (SRP) U0 providing the weak binding properties of the extra electron
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positioned far away from the ‘inner’ electrons. The wave function relevant to the energyW0 is
ϕ0(ρ) ∼ exp(−q0ρ) whereas the exponential factor of the wave function of the neutral donor
has the form f (ρ1, . . . ,ρN) ∼ ∏N

j=1 exp(−iρj/a0j ) where a0j are the effective radii of the

‘inner’ electrons with q−1
0 � a0j . Under this condition an estimation of the last two terms on

the right-hand side of equation (2.10) taken for ρ ≈ q−1
0 yields

U1(ρ) = e2N

4πεε0

[
−

〈
y

∣∣∣∣ N

|r − bey |
∣∣∣∣y

〉
+

〈
y ′, y

∣∣∣∣ 1√
r − y ′ey

∣∣∣∣y ′, y
〉]
. (2.12)

Note that the potential U1(ρ) does not depend on the distribution of the charge of the
neutral 2D donor in contrast to the potentialU0(ρ) affected by the wave function f [13]. Thus
the expression (2.12) is of general character and can be used in order to describe the effect of
the finite width d of the QW and the arbitrary position b of the donor.

3. Stark effect of the quasi-two-dimensional neutral donor

Obviously the qualitative comparison of the results obtained below for the charged donor with
those for the neutral centre is desirable. For this purpose we impart to equation (2.7) for the
function f (ρ1, . . . ,ρN) describing the neutral donor an explicit form{ N∑
j=1

[
− h̄2

2µ
∇2
ρj

− e2

4πεε0

〈
y1, . . . , yN

∣∣∣∣ N

|rj − bey |

−
N∑

i 
=j=1

1

|rj − ri |
∣∣∣∣y1, . . . , yN

〉
− eExj

]}
f = �f (3.1)

where

�N = E0 −N

[
h̄2π2

2µd2
+
e2B2d2

24µ

(
1 − 6

π2

)]
. (3.2)

Let us consider for an example the simplest case of the D0 donor (N = 1). Equation (3.1)
becomes [

− h̄2

2µ
∇2 − e2

4πε0ερ
+ V (ρ)− eEx

]
f (ρ) = �1f (ρ) (3.3)

where the potential

V (ρ) = e2

4πε0ε

(
1

ρ
−

〈
y

∣∣∣∣ 1√
ρ2 + (y − b)2

∣∣∣∣y
〉)

(3.4)

describes the effect of the finite width d of the QW on the ideal 2D neutral hydrogen-like
donor.

In first order perturbation theory the correction to the ground energy level�(0)
1 = −4 Ryd

(Ryd = −h̄2/2µa2
0 is the impurity Rydberg constant) caused by the finite width d is determined

by the matrix element of the potential V (ρ) in equation (3.4) calculated with respect to the
unperturbed wave functions of the 2D ground state

f (ρ) = 4√
2πa0

exp

(
−2ρ

a0

)
. (3.5)

The effect of the electric field on the 2D Coulomb states was considered in [14] and the
corresponding complex energies have been obtained. The real part of the energy includes a red
shift of the energy level and the imaginary part determines the ionization rate. Both effects are
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caused by the electric field. Using the results obtained in [14] and the analytical expression for
the matrix element of the potential V (ρ) (3.4) we obtain for the ground state of the quasi-2D
D0 subjected to a weak electric field

�1 = −4Ryd

{
1 − 2d

π2a0

(
π2 + ϕ2

0 − 4 + 4 sin2 ϕ0

2

)

−
(

2d

πa0

)2 1

π

[(
π3

3
− 2π + πϕ2

0

)(
ln

d

πa0
+ C − 1

2

)
+ "(ϕ0) + "(−ϕ0)

]

+
21

29

(
E

E0

)2

+ i8

(
2

π

)1/2(
E

E0

)1/2

exp

(
− 16E0

E

)}
(3.6)

where

"(ϕ0) = (π + ϕ0)

(
1

6
(π + ϕ0)

2 − 1

)
ln(π + ϕ0)− 1

18
(π + ϕ0)

3

+ cosϕ0 si(π + ϕ0)− sin ϕ0 ci(π + ϕ0)− π sin2 ϕ0

2
ϕ0 = 2πb

d

and where ci(x) and si(x) are the integral cosine and sine, respectively. In the above expression
C(≈ 0.577) is the Euler constant and E0 = e(4πε0εa

2
0)

−1 is the effective electric field of the
impurity. The expression for the energy �1 in equation (3.6) is valid under the condition (2.1)
and for a weak electric field E � E0.

For the narrow QW the energy (−�1) can be treated as the binding energy of the neutral
donor. It is clear from equation (3.6) that an increase in the width of the QW d leads to a
decrease in the binding energy (−�1). The dependence of the binding energy of D0 i.e. of
(−�1) on the width d of the QW is shown in figure 1. A similar effect holds when the impurity
shifts away from the mid-point of the well (ϕ0 
= 0), i.e. the binding energy decreases and
reaches a minimum in the case that the impurity centre is at the edge of the QW (ϕ0 = π ).
Figure 2 shows the binding energy (−�1) as a function of the displacement ϕ0 = 2π |b|/d of
the impurity from the mid-point of the QW for different widths d. These results are in line
with those obtained numerically in papers published during the last two decades (see [15] and
[11] and references therein). Keeping the leading term in equation (3.6) ∼d/a0 we obtain that
for small displacements of the impurity from the mid-point of the QW (ϕ0 � 1) the correction
to the 2D ground level #�1(d, b) caused by the finite width d is given by

#�1(d, b) ≈ 8 Ryd

(
d

π2a0

)(
π2 − 4 +

8π2b2

d2

)
. (3.7)

This expression coincides completely with that derived from the variational equations
given in [15]. Thus our perturbation approach to the description of the effects of the finite
width d of the QW is justified.

Also it follows from (3.6) that for an increase of the electric field strength the energy �1

decreases and #�1(E) ≈ −(21/27)(E/E0)
2 Ryd. The ionization rate P of D0 is defined as

usual by P = −(2/h̄)Im�1. A comparison of the effect of the electric field on 2D Coulomb
states with that on three-dimensional states is given in [14].

4. Stark effect of the weakly bound quasi-two-dimensional extra electron

The wave function ϕ(ρ) and the energy W of the extra electron satisfy the equation (2.8). The
motion of the extra electron is determined by the potentialU0(ρ) (2.9) perturbed by the potential
U1(ρ) (2.10) and the potential −Eex induced by the electric fieldE. Since the effective radius
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Figure 1. The dimensionless binding energy (−�1) of the D0 centre defined by equation (3.6) for
E = 0 scaled to the impurity Rydberg constant Ryd as a function of the dimensionless width d/a0
of the QW, where a0 is the impurity Bohr radius. The impurity is taken to be at the mid-point of
the QW (ϕ0 = 0).

Figure 2. The dependence of the binding energy −�1/Ryd (Ryd is the Rydberg constant)
calculated from equation (3.6) for E = 0 of the D0 centre in the QW of width d = 0.1a0—
solid curve; d = 0.15a0—dashed curve; d = 0.20a0—long dashed curve (a0 is the Bohr radius)
on the displacement of the impurity |b| = (ϕ0d)/2π from the centre of the QW with width d.

of the wave function ϕ0(ρ) of the weakly bound extra electron exceeds considerably the
effective radius of the potentialU0(ρ) the approximation of a zero-range potential will be used
in the following. This approximation is based on the replacement of the potential U0(ρ) by
the δ-function potential ∼δ(ρ). The details of this approach can be found in [16].

Following the main idea of the approximation of a zero-range potential [16] we assume
that the unperturbed ground energy level W0 = −h̄2q2

0/2µ relevant to the potential U0 and
considered below as the parameter of the theory is determined from numerical calculations or
experimental data. The wave function of the ground state ϕ0(ρ) associated with the energy
level W0 has the form

ϕ0(ρ) = DK0(q0ρ) (4.1)

where D is a constant and where K0(x) is the McDonald function (i.e. modified Bessel
function) [17].
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The effect of the electric field E on the energy level W0 is described by the equation (see
[18])

(∇2 + Fx − q2)ϕ(ρ) = −δ(ρ) (4.2)

where

F = 2µeE

h̄2 and q2 = −2µWE

h̄2 .

By solving this equation subject to the boundary condition

ϕ(ρ) = ϕ0(ρ) for ρ → 0 (4.3)

the energy of the extra electron WE in the presence of an electric field can be found. To avoid
cumbersome mathematics only an outline of the calculation will be given below.

The solution to equation (4.2) can be written in the form

ϕ(x, z) = 1

2π

∫ +∞

−∞
eikzg(x, k) dk (4.4)

where g(x, k) is the Green function satisfying the equation(
d

dx2
+ Fx − p2

)
g(x, k) = −δ(x) (4.5)

and where p2 = k2 + q2.
The Green function g(x, k) for the region x � 0 is given by

g(x, k) = πF−1/3Ai(−η0)[Bi(−η) + Ai(−η)] (4.6)

where η(x) = F 1/3(x − x0); η0 = η(0); x0 = F−1p2 and where Ai(u) and Bi(u) are the Airy
functions [17]. The expression for the Green function g(x, k) for the region x � 0 can be
obtained from equation (4.6) by replacing the parameter η0 by η and vice versa.

On using the asymptotic expansion of the Airy functions for η < 0, |η| � 1 [17] we
obtain from (4.6) for the region x � x0 the result

g(x, k) = 1

2p

[(
1 +

5F 2

32p6

)
exp(−px) +

i

2
exp

(
− 4p3

3F

)]
. (4.7)

Substituting the expression (4.7) in equation (4.4) we have for y = 0

ϕ(x, 0) = 1

2π

[
K0(qx) +

F 2

12q6
+

i

2

(
π

6

)1/2(4q3

3F

)−1/2

exp

(
− 4q3

3F

)]
. (4.8)

Substituting the expressions (4.1) withD = (2π)−1 and (4.8) into the boundary conditions
(4.3) taken for z = 0 we use for the McDonald functions K0(u) = − ln(u/2)− C for u � 1.
The equation for the parameter q that in turn determines the energy WE becomes

ln q = ln q0 +
F 2

12q6
+

i

2

(
π

6

)1/2(4q3

3F

)−1/2

exp

(
− 4q3

3F

)
. (4.9)

In first order perturbation theory a correction to the ground level W0 caused by the finite
width of the QW d is governed by the matrix element of the potential U1(ρ) (2.10) calculated
with respect to the normalized wave functions ϕ0(ρ) in equation (4.1) (D = q0π

−1/2). Taking
into account the effect of the electric field E and the confinement effects caused by the QW
we arrive at the expression for the energy of the extra electron W

W = W0 + WE + 〈ϕ0(ρ)|U1(ρ)|ϕ0(ρ)〉. (4.10)
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Taking for an example the expression (2.10) for N = 1 (D−) we have from (4.10)

W = −|W0|
{

1 +
1

6

(
E

E1

)2

− 4d

a0

[(
ln
q0d

4π
+ C

)2(1 − π2/3 + ϕ2
0 + 4 sin 2(ϕ0/2)

4π2

)

+2

(
ln
q0d

4π
+ C

)
(S(ϕ0)− 〈S〉) + R(ϕ0)− 〈R〉

]}
− i

h̄

2
K (4.11)

where

S(ϕ0) = 1

(2π)2

∫ +π

−π
dϕ|ϕ − ϕ0|(1 + cosϕ) ln |ϕ − ϕ0| (4.12)

R(ϕ0) = 1

(2π)2

∫ +π

−π
dϕ|ϕ − ϕ0|(1 + cosϕ) ln2 |ϕ − ϕ0| (4.13)

and correspondingly

〈S〉 = 1

2π

∫ +π

−π
dϕ0(1 + cosϕ0)S(ϕ0)

〈R〉 = 1

2π

∫ +π

−π
dϕ0(1 + cosϕ0)R(ϕ0).

In equation (4.12) E1 = [(2µ)1/2/eh̄]|W0|3/2 is the effective electric field associated with
the SRP U0(ρ). The last term on the right-hand side of the equation (4.12) determines the
detachment rate K of the 2D charged donor

K = |W0|
h̄

(
πE

2E1

)1/2

exp

(
− 4E1

3E

)
. (4.14)

The expressions (4.11)–(4.14) for the energy W are valid for the narrow QW
(q−1

0 � a0 � d) and for a weak electric field E � E1. The total energy of the charged
donor in the narrow QW subject to crossed electric and magnetic fields can be obtained from
equation (2.11).

5. Results and discussion

It follows from (4.11) that the electric field E leads to a red shift of the energy #W(E) such
that

#W(E) = −1

6

(
E

E1

)2

|W0|. (5.1)

A comparison of the 2D shift #W(E) = #W2D(E) (5.1) with that calculated in [18] for
a three-dimensional (3D) weakly bound electron

#W3D(E) = − 1

16

(
E

E13D

)2

|W03D| (5.2)

is desirable at this point. From the equations (5.1) for which W0 ≡ W02D and E1 = E12D are
implied, and equation (5.2), we have

#W3D(E)

#W2D(E)
= 3

8

(
W02D

W03D

)2

. (5.3)

Estimates of the suitable values for the parameters for D− are made further. Using the
values |W02D| = 0.48 Ryd and |W03D| = 0.055 Ryd calculated in [1] and [2] respectively,
we obtain #W3D(E)/#W2D(E) = 28.6. Thus in the presence of the electric fields of equal
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strength the shift of the energy of the 3D charged donor considerably exceeds that of the 2D
structure.

An effect specific to the narrow QW subject to in-plane fields occurs. It follows from
equations (2.11) and (4.11) that under the condition

e2B2d2

24µ

(
1 − 6

π2

)
− |W0|1

6

(
E

E1

)2

= 0 (5.4)

the blue and red shifts of the energy of the extra electron induced by the magneticB and electric
E fields respectively are balanced.

Taking the expression (4.14) for the detachment rate K2D of the 2D system and relating it
to the detachment rate K3D result (see equation (13) in ref. [18]) we obtain

K3D

K2D
= 1√

2π

∣∣∣∣W03D

W02D

∣∣∣∣
1/4(

E

E13D

)1/2

exp

{
− 4E13D

3E

[
1 −

(
W02D

W03D

)3/2]}
. (5.5)

Because of the ratio W02D/W03D = 8.7 the detachment rate of the 3D D− is much greater
than that of the 2D charged donor. As expected it turns out that generally the quasi-2D charged
donor in the narrow QW is far more stable with respect to field ionization than the similar
system in the bulk semiconductor.

The dependences of the energyW on the width d of the QW and the position b = d(ϕ0/2π)
of the impurity centre are described by the factor 4d/a0 multiplied by the term in the square
brackets in equation (4.11). In order for the qualitative analysis to be simplified the logarithmic
approximation (q0d/4π � 1, | ln(q0d/4π)| � 1) is used. For this case we avoid the
cumbersome expressions associated with the functions S(ϕ0) (4.12) and R(ϕ0) (4.13). Note
that in principle these functions can be calculated analytically. In the above mentioned
approximation a correction to the 2D binding energy #Eb(d, ϕ0) = −#W(d, ϕ0) caused
by the finite width of the QW and the position of the impurity can be written in the form

#Eb ≈ |W0| d

π2a0

(
ln
q0d

4π
+ C

)2

G(ϕ0) (5.6)

where

G(ϕ0) = π2

3
− 1 − ϕ2

0 − 4 sin2 ϕ0

2
. (5.7)

It follows from (5.6) that as the impurity centre shifts away from the mid-point of the QW
(ϕ0 = 0) the energy increases and the binding energy decreases and reaches a minimum in the
case where the impurity is at the edge of the QW (ϕ0 = π ). This result coincides with those
obtained numerically by a variational approach [5, 19, 20]. The dependence of the shift of the
binding energy #Eb(d, ϕ0) in equations (5.6) and (5.7) on the displacement b of the impurity
from the mid-point of the QW of different widths d is depicted in figure 3. The reason for the
decrease of the binding energy is that the electrons in the ground size-quantization state (2.6)
are localized close to the centre of the QW (y = 0) regardless of the position of the impurity.
When the impurity is displaced from the point y = 0 towards the edge of the QW the electron–
impurity centre attraction decreases which as a consequence leads to a decrease in the binding
energy. We emphasize that in the narrow QW the effect of the displacement of the impurity
centre increases with increasing width of the well d. For the wide QW this dependence is
completely the contrary. With an increase of the width of the well the effect caused by the
position of the impurity becomes less pronounced. The wide QW of width d = 2a0 and
d = 8a0 considered in [5, 19] and [20] respectively makes a quantitative comparison of our
results and those obtained in the given papers difficult.
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Figure 3. The dimensionless shift of the binding energy #Eb in equations (5.6), (5.7) of the D−
centre scaled to the binding energy of the ideal 2D charged donor |W0| = 0.48 Ryd (q0a0 = 0.69) as
a function of the position of the donor |b| = (ϕ0d)/2π within the QW of width d = 0.1a0—dashed
curve; d = 0.08a0—solid curve.

A change of the sign of the shift#Eb as a function of the width d with the position b of the
impurity can be seen to occur according to equation (5.7). For the impurity centre positioned
at the mid-point of the QW (ϕ0 = 0) the functionG(0) = 1

3π
2 −1 > 0 and the binding energy

increases with increasing width of the QW. If the impurity is localized close to the edge of the
QW (ϕ0 = π ) the function G(π) = −( 2

3π
2 + 5) < 0 and the wider the QW the smaller the

binding energy. Figure 4 shows the energy shift #Eb given by the equations (5.6) and (5.7) as
a function of the width d for the impurity positioned at the centre of the QW and at |b| = d/4.
The differences between the dependences of the energy shift #Eb(d, ϕ0) can be explained
by the screening of the impurity centre produced by the electronic cloud associated with the
neutral donor. For the case b/d ≈ 0 the neutral donor is localized close to the point y = 0
and the screening effect is pronounced. With the increase of the width of the QW the wave
function χ(y) (2.6) becomes widely distributed, screening decreases and the binding energy of
the extra electron increases. The electronic cloud has a smaller effect on the distant impurity,
positioned close to the edge of the QW. The wider the QW the less is the electron–impurity
centre attraction and the less the binding energy.

It should be particularly emphasized that the strong logarithmic approximation providing
a simplified and interpretable form of the equations (5.6) and (5.7) preserves the qualitative,
though not the rigorous quantitative, character of these equations and figures 3 and 4.
Also this approximation constrains considerably the width of the QW. Taking into account
in equation (4.14) the terms (4.12), (4.13), 〈S〉 and 〈R〉 the obtained result can be
extended comfortably to the more accurate description of the narrow QWs of typical width
d ≈ (0.2–0.3)a0. Particularly the crossing of the energy shifts #Eb at ϕ0 ≈ 1.1 (see figure 3)
can be turned into an anticrossing. It follows from (3.5) that the effective radius of the quasi-
‘inner’ electron a0j = 0.5a0. The parameter q0a0 chosen in figures 3 and 4 means that the
parameter q0a0j ≈ 0.35 < 1 and applicability of the equations (4.11), (5.6) and (5.7) is
justified qualitatively.

In view of possible experiments, concrete values for the parameters of a GaAs QW are
µ = 0.067m0 and a narrow well of width d = 20 Å is assumed. Following [1] we take for the
binding energy of the ideal 2D charged donor |W0| = 0.48 Ryd to give in turn for the effective
electric field E1 = 2.02 × 105 V m−1. For the electric field E = 0.31E1 the red shift of the
energy#W(E) can be found from equation (5.1) such that#W(E) ≈ 0.050 meV. This red shift
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Figure 4. The dependence of the shift of the binding energy #Eb in equations (5.6), (5.7) of
the D− centre on the width d of the QW for the impurity positioned: at the centre of the QW
(ϕ0 = 0)—solid curve; at the intermediate point (ϕ0 = π/2)—dashed curve. The binding energy
of the ideal 2D charged donor |W0| is taken to be |W0| = 0.48 Ryd (q0a0 = 0.69).

would be cancelled by a blue shift of the energy of the extra electron induced by the magnetic
field B ≈ 18.3 T. The above electric field produces a detachment rate K ≈ 4.35 × 1010 s−1

according to equation (4.14). Though the GaAs structures remain in the focus of study the
InGaN/GaN material system has attached great interest because of use for the fabrication of
blue–green light-emitting diodes and laser diodes [21]. Particularly the investigations of the
InGaN extremely narrow QWs up to 12 Å are under way [22]. In order to estimate the expected
values we take µ = 0.2m0 and ε = 8.2 (see [21] and references therein) for the InGaN QW
of width d = 18 Å. For E = 0.16E1 where the effective electric field E1 is found to be
E1 = 6.0 × 106 V m−1, the red shift of the energy #W(E) defined by equation (5.1) gives the
result #W(E) ≈ 0.1 meV. To cancel this red shift the magnetic field B ≈ 40 T used widely
in strong magnetic field physics [23] would be applied. The detachment rate induced by the
electric field E = 0.16E0 is K ≈ 3.5 × 109 s−1. When the electric field is approaching the
effective valueE1 the red shift#W(E) becomes more detectable in an experiment. The wider
the QW the less the magnetic field B ∼ d−1 counterbalancing the red shift #W(E). Thus the
effects of crossed electric and magnetic fields on the charged donor in the practically implied
and intensively studied narrow QW are experimentally accessible. For the intermediate values
of the width of the QW (d � a0) and electric field (E � E1) the results obtained above remain
qualitatively valid. The correct quantitative description requires numerical methods.

6. Conclusion

An analytical approach to the problem of a charged donor in a narrow QW in the presence
of crossed electric and magnetic fields both directed parallel to the heteroplanes is developed
originally. Within our theoretical model the extra electron is governed by a δ-function type 2D
potential. The explicit dependences of the total energy of the charged donor on the parameters
of the well and the magnitudes of the external fields are obtained. The dependences of the
binding energy of the charged donor on the width of the well and the position of the impurity
within the well are studied. As the impurity centre shifts from the mid-point of the QW, the
binding energy decreases. With the increase of the width of the narrow QW the effect of the
displacement of the impurity becomes more pronounced. The impact of the relative position
of the impurity within the QW on the dependence of the binding energy on the width of the
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well is studied. The red shift of the energy and the detachment rate of the extra electron both
induced by the weak electric field are calculated using a well established procedure. The red
and blue shifts of the energy caused by the electric and magnetic fields respectively can be
balanced by specifically chosen fields. The quasi-two-dimensional charged donor is found
to be far more stable with respect to the effect of the electric field than the charged donor in
the bulk material. Estimates of the expected values associated with a GaAs and InGaN QWs
show that the effects of the confinement and external fields on the charged donor states can be
observed experimentally.
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